40 research outputs found

    A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition

    Get PDF
    The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni–FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni–FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni–FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections

    Wood Nutrient-Water-Density Linkages Are Influenced by Both Species and Environment

    Get PDF
    Tropical trees store a large amount of nutrients in their woody tissues, thus triggering the question of what the functional association of these elements with other wood traits is. Given the osmotic activity of mineral elements such as potassium, sodium, and calcium, these elements should be strong candidates in mediating the water storing capacity in tropical trees. We investigated the role of wood nutrients in facilitating wood water storage in trees by using branch samples from 48 tropical tree species in South America and examined their associations with wood density (ρ). Wood density varied from 316 kg/m3 in Peru plots, where the soil nutrient status is relatively higher, to 908 kg/m3 in Brazil plots, where the nutrient availability is lower. Phosphorus content in wood varied significantly between plots with lowest values found in French Guiana (1.2 mol/m3) and plots with highest values found in Peru (43.6 mol/m3). Conversely, potassium in woody tissues showed a significant cross-species variation with Minquartia guianensis in Brazil showing the lowest values (8.8 mol/m3) and with Neea divaricata in Peru having the highest values (114 mol/m3). We found that lower wood density trees store more water in their woody tissues with cations, especially potassium, having a positive association with water storage. Specific relationships between wood cation concentrations and stem water storage potential nevertheless depend on both species’ identity and growing location. Tropical trees with increased water storage capacity show lower wood density and have an increased reliance on cations to regulate this reservoir. Our study highlights that cations play a more important role in tropical tree water relations than has previously been thought, with potassium being particularly important

    Mineralogy, geochemistry and classification of the new Smolenice iron meteorite from Slovakia

    Get PDF
    Abstract: A single 13.95 kg mass of a slightly weathered iron meteorite was found in the forest near Smolenice (48°31.2’N, 17°23.9’E; Trnava County, Slovakia). The bulk chemical composition (in wt. %) is: Fe 88.78, Ni 8.16, Co 0.38, P 0.05, S˂0.006 and (in μg/g): Ge˂0.18, Ir 1.67, Ga 1.80, Cr 87.3, Cu 135.1, As 4.52, Mo 5.82, Sn 1.53, W 0.56, Re 0.18, Ru 3.56, Rh 0.90, Pd 4.12, Pt 5.35, Au 1.19, Zn˂5, B˂0.68, Pb˂0.06. Bulk geochemistry, and Ni, Ga, Ge and Ir contents in particular suggest that the meteorite is an octahedrite belonging to the IVA group. The average thickness of kamacite lamellae is 0.22 mm, ranking it as fine octahedrite (Of). The mineral composition is simple, the most abundant minerals being iron (kamacite) (5.16–7.36 wt. % Ni) followed by taenite (16.73–33.93 wt. % Ni). Troilite nodules and daubréelite inclusions and thin veinlets are rare. The Widmanstätten pattern is uniform across the meteorite and plessite structure is developed locally. Analyses of cosmogenic radionuclides (14C and 26Al) indicate that the radius of the Smolenice meteorite could be 30±10 cm and its terrestrial age 11±2 kyr

    Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by <i>Theobroma cacao</i> and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters

    Get PDF
    In response to new European Union regulations, studies are underway to mitigate accumulation of toxic cadmium (Cd) in cacao (Theobroma cacao, Tc). This study advances such research with Cd isotope analyses of 19 genetically diverse cacao clones and yeast transformed to express cacao natural resistance-associated macrophage protein (NRAMP5) and heavy metal ATPases (HMAs). The plants were enriched in light Cd isotopes relative to the hydroponic solution with Δ114/110Cdtot-sol = -0.22 ± 0.08‰. Leaves show a systematic enrichment of isotopically heavy Cd relative to total plants, in accord with closed-system isotope fractionation of Δ 114/110Cdseq-mob   = -0.13‰, by sequestering isotopically light Cd in roots/stems and mobilisation of remaining Cd to leaves. The findings demonstrate that (i) transfer of Cd between roots and leaves is primarily unidirectional; (ii) different clones utilise similar pathways for Cd sequestration, which differ from those of other studied plants; (iii) clones differ in their efficiency of Cd sequestration. Transgenic yeast that expresses TcNRAMP5 (T. cacao natural resistance-associated macrophage gene) had isotopically lighter Cd than did cacao. This suggests that NRAMP5 transporters constitute an important pathway for uptake of Cd by cacao. Cd isotope signatures of transgenic yeast expressing HMA-family proteins suggest that they may contribute to Cd sequestration. The data are the first to record isotope fractionation induced by transporter proteins in vivo

    Zinc isotopic compositions of breast cancer tissue

    Get PDF
    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. https://creativecommons.org/licenses/by-nc-nd/3.0/ The attached file is the published version of the article.An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn isotopic lightness in tumours suggests that sulphur rich metallothionein dominates the isotopic selectivity of a breast tissue cell, rather than Zn-specific proteins. This reveals a possible mechanism of Zn delivery to Zn-sequestering vesicles by metallothionein, and is supported by a similar signature observed in the copper isotopic compositions of one breast cancer patient. This change in intrinsic isotopic compositions due to cancer has the potential to provide a novel early biomarker for breast cancer.This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. https://creativecommons.org/licenses/by-nc-nd/3.0/ The attached file is the published version of the article

    The Cd isotope composition of atmospheric aerosols from the Tropical Atlantic Ocean

    Get PDF
    Stable isotope compositions can potentially be used to trace atmospheric Cd inputs to the surface ocean and anthropogenic Cd emissions to the atmosphere. Both of these applications may provide valuable insights into the effects of anthropogenic activities on the cycling of Cd in the environment. However, a lack of constraints for the Cd isotope compositions of atmospheric aerosols is currently hindering such studies. Here we present stable Cd isotope data for aerosols collected over the Tropical Atlantic Ocean. The samples feature variable proportions of mineral dust-derived and anthropogenic Cd, yet exhibit similar isotope compositions, thus negating the distinction of these Cd sources by using isotopic signatures in this region. Isotopic variability between these two atmospheric Cd sources may be identified in other areas, and thus warrants further investigation. Regardless, these data provide important initial constraints on the isotope composition of atmospheric Cd inputs to the ocean
    corecore